skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shang, Hanzhi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Chalcogenide perovskite semiconductors, with their excellent optical absorption, chemical stability, and lack of toxicity, have emerged as a promising alternative to traditional halide perovskites. Through first-principles density functional theory, we show that despite the large lattice mismatch between the prototypical BaZrS3 and BaZrO3 chalcogenide perovskites, BaZr(S1−xOx)3 can form low-energy ordered lattices that significantly reduce strain. The bandgap dependence of the resulting ordered compound on x is found to exhibit double Vegard's law behavior, having two distinct linear regions, associated with an underlying distorted or undistorted perovskite structures. 
    more » « less
    Free, publicly-accessible full text available June 9, 2026